Investigating the effects of random balloon pulsation on gas exchange in a respiratory assist catheter.

نویسندگان

  • Heide J Eash
  • Stephanus G Budilarto
  • Brack G Hattler
  • William J Federspiel
چکیده

We are developing an intravenous respiratory assist catheter, which uses hollow-fiber membranes wrapped around a pulsating balloon that increases oxygenation and CO2 removal with increased balloon pulsation. Our current pulsation system operates with a constant rate of pulsation and delivered balloon volume. This study examined the hypothesis that random balloon pulsation would disrupt fluid entrainment within the fiber bundle and increase our overall gas exchange. We implemented two different modes for random (rates and delivered volume) versus constant pulsation. The impact on gas exchange was measured in a 3 l/min water flow loop at 37 degrees C. CO2 gas exchange for randomized beat rate mode was comparable to its corresponding average constant pulsation (e.g., constant 286 beats/min versus randomized 200-400 beats/min was 299.5+/-0.9 and 302.2+/-1.4 ml/min/m, respectively). Random volume mode CO2 exchange was also comparable to constant delivered balloon volume (100% inflation and deflation) (e.g., 294.3+/-0.6 and 301.1+/-1.7 ml/min/m, random 50-100% inflation and constant, respectively). Greater active mixing was seen with constant pulsation as compared with randomly changing the parameters of balloon pulsation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flow visualization study of a pulsating respiratory assist catheter.

Our group is currently developing an intravenous respiratory assist device that uses a centrally located pulsatile balloon within a hollow fiber bundle to enhance gas exchange rate via active mixing mechanism. We tested the hypothesis that the non-symmetric inflation and deflation of the balloon lead to both nonuniform balloon-generated secondary flow and nonuniform gas exchange rate in the fib...

متن کامل

Effect of vessel compliance on the in-vitro performance of a pulsating respiratory support catheter.

Intravena caval respiratory support (or membrane oxygenation) is a potential therapy for patients with acute respiratory insufficiency. A respiratory support catheter is being developed that consists of a bundle of hollow fiber membranes with a centrally positioned pulsating balloon to enhance gas exchange. This study examined the influence of vessel compliance on the gas exchange performance o...

متن کامل

Evaluation of fiber bundle rotation for enhancing gas exchange in a respiratory assist catheter.

Supplemental oxygenation and carbon dioxide removal through an intravenous respiratory assist catheter can be used as a means of treating patients with acute respiratory failure. We are beginning development efforts toward a new respiratory assist catheter with an insertional size <25F, which can be inserted percutaneously. In this study, we evaluated fiber bundle rotation as an improved mechan...

متن کامل

Acute in vivo testing of an intravascular respiratory support catheter.

Current treatment for acute respiratory failure (ARF) includes the use of mechanical ventilation and/or extracorporeal membrane oxygenation, both of which can exacerbate lung injury. Intravenous respiratory support, using hollow fiber membranes placed in the vena cava, represents an attractive potential treatment for ARF, which could help reduce or eliminate ventilator induced trauma and/or oth...

متن کامل

Evaluation of local gas exchange in a pulsating respiratory support catheter.

An intravenous respiratory support catheter, the next generation of artificial lungs, is being developed in our laboratory to potentially support acute respiratory failure or patients with chronic obstructive pulmonary disease with acute exacerbations. A rapidly pulsating 25 ml balloon inside a bundle of hollow fiber membranes facilitates supplemental oxygenation and CO2 removal. In this study,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ASAIO journal

دوره 52 2  شماره 

صفحات  -

تاریخ انتشار 2006